東京学芸大学 気象学研究室

http://kishou.u-gakugei.ac.jp

メンバー紹介

• 教員:

- 教授: 松田佳久 (自然館3階N311)
- 准教授: 佐藤尚毅 (自然館3階N309)

• 学生:

- 修士2年: 1名
- 修士1年: 3名
- 学部4年: 8名 (A類4名、F類4名)
- 学部3年: 7名 (A類3名、F類4名)

教員紹介

- 松田佳久:
 - 教授
 - 居室: 自然館3階N311
 - 専門分野: 気象力学、惑星気象
- 佐藤尚毅:
 - 准教授
 - 居室: 自然館3階N309
 - 専門分野: 気候変動、モンスーン
 - 気象予報士

気象学研究室の特徴

- 研究テーマを自分で決められる。
- 気象予報士になれる。2016年度は3名合格!(努力しだいです)
- 計算機に強くなれる。
- 就職、進学に強い。

- <u>大学院進学(修士課程や他大学)</u>にも対応した勉強をしています。(進学は個人の自由です)
- 高等学校でのSSHのような<u>高度な教科教育</u>を視野に入れた勉強をしています。
- 教職に限定せず、気象やその他<u>自然科学の専門家</u>になるための勉強に力を入れています。

卒業研究(2015年度の例)

- 台風の発生・通過に伴うミンダナオドームの変動とエルニーョモド キ現象との関係
- 黒潮の大蛇行の発生原因について
- ・ 台風の強さと低気圧位相空間によって診断された構造変化の関係
- 2013年1月14日の大雪事例における環境場の特徴
- 領域気象モデルWRFによる豪雨のタイプ別予測確率の比較
- ・ 非静力学領域気象モデルWRFによるダウンバーストの再現可能性
- 金星の熱潮汐波による南北熱輸送量の理論的研究
- 株で勝つ方法 ~天気を用いた決定木分析による株価予測~

卒業研究(2014年度の例)

- MR14-05航海で観測された北極低気圧の構造解析
- 「みらい」北極航海MR14-05における北極海氷融域の 海洋混合層の発達過程について研究
- 静岡県御殿場市における局地的な強雨の傾向と事例 解析
- ・ 栃木県小山市と東京23区における局地的大雨の比較
- VHF観測装置による落雷の3次元位置標定

研究テーマの考え方

- 気象学研究室では研究テーマは基本的に自分で決めてもらっています。
 - テーマを決めることも研究の一環です。
- テーマは自由ですが
 - 気象に関係があること。
 - 自然科学の手法を用いていること。
 - 卒業研究としてふさわしいレベルであること。

が条件です。

単なる「防災アンケート」、「博物館めぐり」などはお断りします。

気象学研究室でできる研究(例)

- データ解析
 - 気象官署やアメダスのデータを解析
 - 格子点データや衛星観測データの解析
- 数値シミュレーション
 - 惑星大気の構造
 - 局地気象モデルを用いた数値シミュレーション
- 観測
 - 放射の観測(散乱光、紫外線など)
 - 熱環境の観測(気温と放射)
 - 乗船観測
- 以上はあくまで例です。実際の研究テーマは各自の興味、関心に応じて、指導教員と話し合いながら決めていきます。

利用可能な観測データ

- 気象庁による観測データ
 - 気象庁年報、AMeDASデータ、解析雨量データ、 高層気象データ、台風データ、気象庁天気図
- 格子点データ
 - 客観解析データ、衛星観測データ、地球温暖化 予測データ
- 海洋観測データ
 - ブイデータ、フロートデータ

利用可能な観測機材

- 一般気象
 - 乾湿計、気圧計、風向風速計
- 放射関係
 - 赤外線カメラ、分光放射計、太陽放射照度計、紫外線強度計
- 熱環境関係
 - 黒球温度計、放射温度計
- 化学関係
 - PH計、導電率計
- 天体望遠鏡

乗船観測

- 希望すれば、観測船に乗船することができます。
 - 勢水丸(三重大学)、長崎丸(長崎大学)、みらい (海洋研究開発機構)。
 - 運航計画は年度ごとに異なるので、希望しても乗船できないこともあります。
 - 残念ながら、予算の都合上、旅費は自己負担となります。

NICTでの研究

- 学芸大の隣にある情報通信研究機構(NIC T)で研究することもできます。
 - おもに衛星データなどに関する研究になります。
 - 受け入れの可否や研究内容については、NICT の先生との話し合いによって決まります。

計算機について

- 気象学の研究では計算機を積極的に活用します。
- UNIX環境でのプログラミング
 - CまたはFORTRAN。
- UNIX環境へのアクセス
 - 研究室の計算機に直接ログインする。
 - 各自のノートPCにTeraTermをインストールして研究室の計算機に接続する。
 - 各自のノートPCにcygwinをインストールする。
- UNIX系計算機の使い方やプログラミングは、3年生春学期の計算機セミナーや、秋学期の特別演習で教えます。 初心者でも問題ありません。

資格取得について

- 研究や就職で役立つので、資格の取得をおすすめしています。
 - 気象予報士 (大学院生1名が取得済)
 - -情報処理技術者試験
 - 基本情報技術者
 - 応用情報技術者

卒業後の進路

(2015年度までの例)

教員	東京都、静岡県、横浜市、群馬県など。
公務員	気象庁(国家公務員Ⅱ種)、県庁、市役所など。
企業	天気予報会社、環境関係、IT関係、コンサルティン グ会社など。
大学院	東京学芸大学、総研大、筑波大学、東北大学、東京大学、北海道大学など。

研究室の一年(3年生)

(2016年度の例)

年度初め	ガイダンス、面接
春学期	地球物理学 計算機セミナー 卒業研究のための勉強 (天気予報セミナー)(学芸カフェテリア講座)
夏休み	総会 課題
秋学期	地球物理学実験 気象科学特別演習 卒業研究のための予備調査
春休み	総会

研究室の一年(4年生)

(2016年度の例)

年度初め	ガイダンス、面接
春学期	卒業研究教科書読みセミナー数値計算セミナー卒業研究のためのセミナー
夏休み	総会
秋学期	卒業研究 卒業研究のためのセミナー 中間発表、発表会
春休み	総会

履修を要望している科目

2年春学期までに履修することを要望している科目の一覧です。

A類理科	基礎物理学、物理学概論、物理学演習、 力学及び演習 I、電磁気学及び演習 I、 自然科学のための数学、物理数学 I、Ⅱ 合計8科目
B類理科	物理学概論、物理学演習、 力学及び演習 I、電磁気学及び演習 I、 自然科学のための数学、物理数学 I、Ⅱ 合計7科目
F類自然	基礎物理学、物理学概論、物理学演習、 力学及び演習 I、電磁気学及び演習 I、 自然科学のための数学、物理数学 I、II 合計8科目

[※]配属の決定にあたっては、これらの科目の履修状況を参考にします。

履修を要望している科目

2年秋学期以降に履修することを要望している科目の一覧です。

Ⅳ学期	力学及び演習Ⅱ、電磁気学及び演習Ⅱ、 現代物理学
	合計3科目
Ⅴ学期	地球物理学、 熱力学及び演習、量子力学及び演習 I 、 流体力学(F類自然のみ)
	合計4科目
VI学期	地球物理学実験、気象科学特別演習、 統計力学及び演習、量子力学及び演習 II 合計4科目

コアタイムについて

ありません。好きなときに勉強してください。

- ただし、4年生については、卒業研究の一環として、週1回程度(火または金)ゼミがあり、授業期間中は、週2日(2016年度は火金)1~5限は予定を空けるようにお願いしています。

養成塾について

研究室の方針に合いません。養成塾に入りたい人は、来ないでください。

新教員養成コースも原則的にお断りしたいと思います。

注意事項

大学でのメールアドレス(@st.u-gakugei.ac.jp)に届くメールを必ず読んでください。

オリエンテーションは、4月7日(金)5限を予定しています。(変更の可能性もあります)